Robust Bayesian Optimization with Student-t Likelihood
نویسندگان
چکیده
Bayesian optimization has recently attracted the attention of the automatic machine learning community for its excellent results in hyperparameter tuning. BO is characterized by the sample efficiency with which it can optimize expensive black-box functions. The efficiency is achieved in a similar fashion to the learning to learn methods: surrogate models (typically in the form of Gaussian processes) learn the target function and perform intelligent sampling. This surrogate model can be applied even in the presence of noise; however, as with most regression methods, it is very sensitive to outlier data. This can result in erroneous predictions and, in the case of BO, biased and inefficient exploration. In this work, we present a GP model that is robust to outliers which uses a Student-t likelihood to segregate outliers and robustly conduct Bayesian optimization. We present numerical results evaluating the proposed method in both artificial functions and real problems.
منابع مشابه
Filtering Outliers in Bayesian Optimization
Jarno Vanhatalo, Pasi Jylänki, and Aki Vehtari. Gaussian process regression with Student-t likelihood. In NIPS, pages 1910–1918, 2009. Amar Shah, Andrew Gordon Wilson, and Zoubin Ghahramani. Student-t processes as alternatives to Gaussian processes. In AISTATS, pages 877–885, 2014. Anthony O'Hagan. On outlier rejection phenomena in Bayes inference. Journal of the Royal Statistical Society. Seri...
متن کاملPractical Bayesian optimization in the presence of outliers
Inference in the presence of outliers is an important field of research as outliers are ubiquitous and may arise across a variety of problems and domains. Bayesian optimization is method that heavily relies on probabilistic inference. This allows outstanding sample efficiency because the probabilistic machinery provides a memory of the whole optimization process. However, that virtue becomes a ...
متن کاملStudent-t Process Regression with Student-t Likelihood
Gaussian Process Regression (GPR) is a powerful Bayesian method. However, the performance of GPR can be significantly degraded when the training data are contaminated by outliers, including target outliers and input outliers. Although there are some variants of GPR (e.g., GPR with Student-t likelihood (GPRT)) aiming to handle outliers, most of the variants focus on handling the target outliers ...
متن کاملRobustness-based portfolio optimization under epistemic uncertainty
In this paper, we propose formulations and algorithms for robust portfolio optimization under both aleatory uncertainty (i.e., natural variability) and epistemic uncertainty (i.e., imprecise probabilistic information) arising from interval data. Epistemic uncertainty is represented using two approaches: (1) moment bounding approach and (2) likelihood-based approach. This paper first proposes a ...
متن کاملStudent-t Processes as Alternatives to Gaussian Processes
We investigate the Student-t process as an alternative to the Gaussian process as a nonparametric prior over functions. We derive closed form expressions for the marginal likelihood and predictive distribution of a Student-t process, by integrating away an inverse Wishart process prior over the covariance kernel of a Gaussian process model. We show surprising equivalences between different hier...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1707.05729 شماره
صفحات -
تاریخ انتشار 2017